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Introduction
Epidermal growth factor receptor is a member of the ERBB/HER 
receptor tyrosine kinase superfamily. ERBB/HER super family 
consists of four members including: (1) EGFR, ERBB1/HER1, (2) 
ERBB2/HER2, (3) ERBB3/HER3, (4) ERBB4/HER4. Among these, the 
role of EGFR has become clearer. EGFR has three parts including, 
extracellular, transmembrane and intracellular region. The extracellular 
part has three domains (I, II and III) that ligands bind to domain III. 
The transmembrane part consists of hydrophobic amino acids and 
its role is yet unknown. Intracellular part has tyrosine kinase activity 
and C-terminal tail. At present, both extra and intracellular part of the 
receptor is targeted with some FDA approved drugs as Epidermal 
Growth Factor Receptor Inhibitor (EGFRI) and Tyrosine Kinase Inhibitor 
(TKI) . When EGFR binds to its ligand, EGF at extracellular domain 
in normal cells induces conformational changes at the allosteric site 
of the EGFR forming homo or heterodimers which further induces 
tyrosine phosphorylation in intracellular domain, leading to the cell 
proliferation and other signal cascades; However, when enhanced 
in malignant cells, it stimulates uncontrolled proliferation [1]. EGFR is 
a major cooperator of a complex signaling cascade that modulates 
growth, migration, signaling, adhesion, differentiation and survival 
of cancer cells [2]. Some studies have shown that the EGFR can 
be overexpressed by gene amplification and mutation in regulatory 
elements or be altered in a variety of malignancies. EGFRs also have 
a significant role in tumour development and progression, causing 
cell proliferation, regulating apoptotic cell death, angiogenesis and 
metastatic spread of the tumour cells [3-6]. In addition, they play an 
important role in controlling normal cell growth, apoptosis and other 
cellular functions. Somatic mutations in EGFR can cause abnormal 
activation of the receptors causing incorrect binding of ligand to 
the receptor in the extracellular domain that may lead to disturbed 
signaling and uncontrolled cell division, which can finally cause some 
type of cancer. Recently, it has been shown that ligand binding to 
the extracellular domain causes allosteric changes in the intracellular 

part of the receptor, resulting in the activation of the intracellular 
tyrosine kinase. Also, the ability of allosteric ligands and their binding 
affinity varies. Some studies have demonstrated independent activity 
of EGFR ligand both as homo and heterodimers. These results can 
be of importance because synthesised antagonists can probably 
change allosteric conformation of the molecules which can in turn 
decrease or disturb ligand binding ability and/or tyrosine kinase 
activity leading to the inhibition of signal transduction in tumour cell 
and preventing malignant cell growth [7] [Table/Fig-1].

Downregulation of EGFR is partly done by internalisation of the 
activated EGFR, followed by degradation in the lysosomes and partly 
by the desensitisation induced by phosphorylation of serine residues 
in the intracellular domain. A new study has shown that receptor 
internalisation is more important than the number of receptors in 
the surface of cell occupied by receptor inhibitor drugs in cancer 
therapies [8]. On the other hand, EGFR inhibitors accelerate the 
expression of Major Histocompatibility Complex (MHC) Class I and 
Class II molecules [9,10] and enhance immunity [11]. Some results 
demonstrated that if keratinocytes are treated simultaneously with 
an EGFR, ligand and IFNγ can induce MHC class II [12]. However, 
EGFRI can increase MHC Class II molecules in normal and malignant 
keratinocytes through a mechanism that likely involves MHC Class II 
Transactivator (CIITA) [9] and have adverse effects like dermatologic 
toxicities [13-15]. Tyrosine kinase inhibitor is another way to control 
EGFR and inhibit the activity of this pathway [16,17]. EGFRIs have 
potential role in the treatment of advanced or recurrent cancers 
[18].

EGFRIs may facilitate antigen presentation in the lung tumour cells 
contributing to anti-tumour response [19]. Treatment with EGFRIs 
also prevent interleukin-13 induced mucin production in the rat 
respiratory epithelium in vivo [20]. Blocking EGF with EGFRIs leads 
to the inhibition of tumour growth or in certain cases may cause 
tumour regression in the KRAS-wild type gene however it is not 
efficient in KRAS mutant gene. New studies have demonstrated 
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ABSTRACT
Epidermal Growth Factor Receptor (EGFR) has central role in cancer therapy because it causes tumour progression in many cases. 
The EGFR has seven ligands. Each factor that can block this binding, inhibits the intracellular signal transduction and prevents 
progression of the tumours. Immune system response is the most important factor for suppressing the initial stage of tumour growth 
and destroying some initial malignant cells, daily. On the other hand, tumours have different mechanisms to hide their antigens and 
escape from immune system responses. In contrary, tumours use some mechanisms to escape from immune system such as: 1) 
use of TGF-β to initiate angiogenesis and immune suppression; 2) Induces Treg cell activation to modulate other immune cells; 3) 
secretion of the prostaglandin E2 to convert T cell into Treg. So, if a superantigen fused to one of the EGFR-ligands, causes the 
induction of immune system responses against the tumour cells. One of the new methods is based on the use of the fused super 
antigen with a ligand of the EGFR to inhibit ligand attaching to the EGFR and inducing immune system responses. To achieve this 
goal, we can block binding of EGFR to their ligands in the extracellular domain by fusing ligands with bacterial superantigens, 
toxins or cytokines of the viruses and plants that can induce immune system responses and kill malignant cells. So, the fused 
ligand can both block signal transduction and induce immune system response against malignant cells. In addition, with combining 
traditional drugs, high efficacy of the tumour treatment can be achieved. The aim of this review is to assess the mentioned strategy 
for targeting tumours.
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ErbB Family (EGF-R)

Ligand Author-Year Studies Experiment model Role

EGF
WHJ Ward-
[30]

4-(3-chloroanilino) quinazoline 
(CAQ) which is a potent inhibitor 
of tyrosine kinase.

stimulates cell growth

TGF-a Valabrega, Giorgio-
[31]

expression of exogenous 
TGFalpha in breast cancer cells, 
Trastuzumab-induced HER2 
endocytosi was reduced.

Breast cancer
mitogenic polypeptide and 
signaling pathway for cell 
proliferation

Betacellulin (BTC)
Huotari, MA-
Vallières, Nicolas-
[32,33]

BTC overexpression induces 
Schwann cell proliferation and 
improves recovery of locomotor 
function.

nerve repair
Is a protein that synthesised 
primarily as a transmembrane 
precursor

Amphiregulin (AR)
McCarthy, FM.-
[34]

Amphiregulin is overexpressed 
by classical monocytes in non-
small cell lung cancer 

non-small cell lung cancer
Autocrine growth factor

Heparin Binding EGF-like 
Growth Factor (HB-EGF)

Zhou, Yu 
[35]

EGF-like growth factor protects 
the enteric nervous system.

nervous system. Major role in wound healing, 
heart function

Epiregulin (EPR)
Bauer, Alison K. 
[36]

Epiregulin induce lung 
tumour promotion in murine 
carcinogenesis model.

Lung cancer
Ligand of EGF receptor

SOS1
Cai, D. 
[39]

SOS1 mutant, a guanine 
nucleotide exchange factor, 
upregulation of MYC and Erb 
system.

Lung adenocarcinoma

Signal transduction

SRC
Kraus, Sarah 
[40]

c-Src is activated by the EGFR 
and gonadotropin-releasing 
hormone.

COS7 cells interact with cellular cytosolic 
and phosphorylation of tyrosine 
residues

[Table/Fig-1]:	 Studies in relationship with ErbB family, showing the ligands and their roles.

novel strategies to undo KRAS mutant in order to make these 
drugs efficient [21,22]. Blocking EGFR signaling enhances the 
inflammation in the skin through upregulation of chemokines, and 
recruits mononuclear cells including T cells, NK cells, macrophages 
and dendritic cells [23,24]. EGFR expressed on tumour cells may 
induce a specific cellular immune response in vivo [25]. Mutated 
genes are recognised as foreigners by the host immune system, they 
might cause stronger immune responses and can be an appropriate 
target for cancer immunotherapy [26]. Several studies have shown 
that the mutation in tumour-specific EGF-R, such as EGFRvIII [27] 
in glioblastoma multiform arise from immune responses. EGFR can 
stimulate hypersecretion of mucin and cause chronic airway disease 
such as asthma [28,29].

Monoclonal antibody can attach to EGFR and inhibit activation 
and autophosphorylation of EGFR [30-32]. Monoclonal antibody 
attaches to the ligand and blocks receptor [32,33]. HER-1 (EGFR) is 
one of the most extensively studied growth factor receptors. TGF-a 
is possibly the most potent HER-1 ligand and influences wound 
healing, epidermal maintenance, gastrointestinal function and 
lactation [34]. HER-1 is widespread in epithelial cells and also in 
mesenchymal cells such as fibroblasts, osteogenic and chondrogenic 
cells. Some tumours differentiated from these cells, express HER-
family members and often show TGF-a and/or HER activation. 
Both TGF-a and EGF have shown to promote the pivotal growth of 
keratinocytes, helping to cover an epidermal wound. TGF-a is more 
effective than EGF in stimulating epidermal regeneration after burns 
[35]. On the other hand, TGF-a like EGF is overexpressed in tumour. 
TGF-β signaling is one of the major factors in cancer [36]. The TGF-β 
activation causes metastases and tumour proliferation in cancer 
tissue. TGF-β have been linked with both experimental and human 
cancers and can either promote or inhibit tumour development [37]. 
On the other hand, inhibition of TGF-β signaling have been shown 
to block hepatocellular carcinoma growth [38]. TGF-β and tumour 
acting together, first TGF-β equilibrates the components of tumour 
microenvironment and then tumour cells balance the activity of 
inflammatory cells or fibroblasts with cancer cells causing tumour 
growth or progression. Overall, EGFR antibodies suppress tumour 
development and progression, cell proliferation, angiogenesis and 
metastatic spread of the tumour cells [Table/Fig-2].

[Table/Fig-2]:	 Schematic figure of EGFR antibody inhibiting the growth of tumour: 
EGFRIs have significant role in suppressing tumour development and progression, 
blocking cell proliferation, angiogenesis and metastatic spread of the tumour cells. 

There are two TGF-β signaling responses, the first is called an 
“early” and the other is termed “late” TGF-β signaling response. The 
early response pattern is associated with longer response and may 
reflect the physiological inflammatory response but late response 
with shorter survival time might associate with long-term TGF-β 
activation similar to the one previously described in colorectal 
cancer [39]. TGF-β, plays a dual role in tumour, acting as a tumour 
suppressor in early stages and as tumour promoter in late stages 
of tumour progression [40]. TGF-β may be downregulated in cancer 
cells to promote their growth but their expression increased in 
some human cancers, including pancreatic, colon, lung, stomach, 
endometrium, breast, prostate, brain, and bone cancers. Primarily, 
tumour lose their growth inhibitory response to TGF-β and then 
produce massive amounts of proteins, the increased expression of 
TGF-β provides a selective advantage for tumour cell survival. TGF-β 
are also angiogenic and have potent immunosuppressive effects, 
including inhibiting NK cells functions exclusively [41]. The increased 
expression of TGF-β is usually accompanied by a loss in the growth 
inhibitory response to TGF-β [41]. TGF-β signaling is associated 
with loss of cell polarity, acquisition of cellular motility, and increased 
tumour invasion [42,43]. TGF-β, produced by tumour cells and 
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regulatory T cells support epithelial cells to become mesenchymal 
stem cells through a process known as Epithelial–Mesenchymal 
Transition (EMT), thereby promoting metastasis and fibrosis which 
result in activation of myofibroblasts, causing excessive production 
of Extracellular Matrix (ECM) and inhibition of ECM degradation 
[44,45].

Superantigen Activated T Cell
One of the modern methods for attacking tumour cells is the use 
of a superantigen fused to the TGF-a. This fusion structure can 
bind to tumour EGF receptor and show inhibitory effects [46,47]. 
When EGFR block with EGFRIs, not only angiogenesis, metastases 
and survival of the cancer cells decreases but also the immune 
system was activated. In other hand EGFRIs can increase immune 
recognition and recurrent of immune cell like NK cell and T cell 
to inflammation site [Table/Fig-3]. On the other hand, this fusion 
can invite the CD4 T cells and CD8 T cells around the tumour 
[48]. One of the major strategies to cure tumours is to activate 
immune cells like T cells for recognising tumour antigens [49-55]. 
Furthermore, exposure of super T cells to the superantigens leads 

damage. The normal growth control mechanisms are overcome 
by genetic mutations and limiting or completely blocking apoptotic 
mechanisms [34]. Tumour cells can often take the advantage of 
genetic programs with the purpose of maintaining homeostasis, 
e.g., like the angiogenic response to hypoxia or production of 
growth factors for maintenance [34]. Several studies has shown 
growth factors and/or their respective receptors overexpressed in 
tumours or premalignant cells [74,75]. There are many strategies 
used for tumour immunotherapy including: interleukin-2, antibodies 
that block Cytotoxic T Lymphocyte-associated Antigen 4 (CTLA4) 
[76,77], antibodies that block Programmed Death-1 (PD-1) [78,79] 
and adoptive cell transfer of tumour-infiltrating lymphocytes.

The general troubles in antitumour immune responses are the 
loss or the mutation of antigens that are recognised by T cells, 
loss of antigen-presenting machinery components such beta-2-
microglobulin and HLA [80,81], tumour cell induced inactivation of 
T cell signaling [82], resistance to the proapoptotic effects of toxic 
granules such granzymes and perforin, death receptors, Tumour 
necrosis factor Related Apoptosis-Inducing Ligand (TRAIL), or 
interferons [83].

T cells play a major role in tumour escape and in limiting the success of 
cancer immunotherapy. Unresponsiveness to the specific antigens is 
early event in tumour progression. Myeloid-Derived Suppressor Cells 
(MDSC) play an important role in T cell non-responsiveness [84,85]. 
Immature myeloid cells are able to take up soluble proteins, process 
them and present antigenic epitopes on their surface and induce 
Ag-specific T cell anergy. In physiological conditions, APC consists 
of primarily Dendritic Cells (DCs) and macrophages. In tumour-
bearing mice, another group of bone marrow derived cells may be 
a part of APC population. These cells identified as Gr-1+CD11b+ 
cells are comprised of precursors of macrophages, granulocytes, 
DCs, and myeloid cells at earlier stages of differentiation [86-88]. 
These immature cells are present in bone marrow and under normal 
conditions and become differentiated into mature myeloid cells [89], 
however, before this event, like immature myeloid cells, they may 
cause energy in immune cells. Immature myeloid cells from tumour-
bearing mice differentiate into mature cells within five days, adoptive 
transfer into tumour-free recipient after this period, did not affect 
peptide specific immune response.

Naturally, CD4+CD25+ regulatory T cells (Treg) play an important 
role in induction and maintenance of T cell tolerance [90]. T 
regulatory cells are produced in the thymus as a functionally mature 
subpopulation of T cells or induced from T cells in periphery. Tumour 
can either accumulate Tregs or convert non-Tregs to Tregs around 
them [90]. The major role of Tregs is their ability to suppress other T 
cells. However, Tregs can suppress effective cells and tumour can 
increase this activity by Prostaglandin E2 [90].

Discussion
Many studies provide a clear understanding on how host immunity 
plays a major role in control of tumour development [91]. Changing 
in the number and the function of antigen-specific T cells is the 
main factor responsible for tumour escape. T cell ignorance 
apparently plays the most critical role at early stages of tumour 
development [92]. Altered function of antigen-specific T cells is 
one of the major factors responsible for tumour escape. On the 
other hand, administration of tumour-derived immature myeloid 
cells dramatically inhibits CD8+ T cell response to a specific 
antigen. Activated Tregs in tumours can: 1) inhibit cytokines' 
secretion; 2) suppress cell function through cytolysis and metabolic 
disruption. EGFRIs can inhibit both tumour growth and increase 
MHC Class II in keratinocytes. Antitumour response or antitumour 
treatment should be used at different stages of disease to prevent 

[Table/Fig-3]:	 Schematic diagram of EGFRIs and their antitumour effect including 
recognition and respond to the tumour. EGFRIs can decrease survival, proliferation, 
angiogenesis and migration of the tumour. On the other hand, EGFRIs can increase 
immune recognition and the recurrence of immune cell like NK cells and T cells to 
the inflammation site.

to the activation and upregulation of phosphorylation of tyrosine 
kinases [55]. Tumour-Targeted Superantigens (TTS) recruits potent 
T cell activating features of a superantigen like Staphylococcus 
aureus enterotoxin against tumour cells [56] or causing apoptosis 
[57]. In vitro Staphylococcus aureus enterotoxin causes increased 
secretion of INF-γ from mononuclear cell and leads to the more 
apoptosis of tumour cells [58]. One problem in this strategy is the 
secretion of human antibodies, so the use of the superantigens 
with low antigenicity is more appropriate [59]. After attachment 
of TGF-a part to the receptor, superantigen part stay outside of 
fusion structure that cause activation of T cells. For this strategy, first 
TGF-a binds EGFR that is expressed in the surface of the tumour, 
in next step, superantigen can attract lymphocytes to the site of 
action. Superantigen can efficiently induce inflammatory cytokine 
production [54,60-64].

Another method is to utilise a superantigen fused to the tumour 
reactive antibody [65-68] or fused to the anticancer drug [69]. In 
case of antibody, monoclonal antibody is recognised by tumour 
cell fused to the superantigen. Superantigen with bicomponent can 
cause apoptosis in tumour cell [70-73].

Tumour
The process of tumour development is obviously an imbalance 
in the growth homeostasis due to genetic reprogramming and/or 
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Target Drugs Antibody type Cancer Trial status

EGFR Cetuximab (Erbitux) Monoclonal antibody 
EGFR inhibitor used for the treatment of metastatic colorectal 
cancer, metastatic non-small cell lung cancer and head and 
neck cancer.

Approved

EGFR Panitumumab
Fully human monoclonal 
antibody

Metastatic Colorectal Cancer
Approved as a first-line 
agent in combination with 
FOLFOX

EGFR Matuzumab
Humanized monoclonal 
antibody

Binds to the EGFR with high affinity. Advanced non-small 
cellular lung carcinoma
Advanced adenocarcinomas of stomach and esophagus

Phase II

EGFR Necitumumab
Recombinant human IgG1 
monoclonal antibody

Binds to the EGFR.
antineoplastic. 
non-squamous non-small-cell lung carcinoma.

The US FDA approved 
necitumumab under the 
brand name Portrazza.

Anti-EGF receptor
ABX-EGF
(Abgenix)

Human anti-EGF receptor 
monoclonal antibody

Colorectal cancer, metastatic non-small cell lung cancer and 
head and neck cancer.

PhaseI/II

EGFR h-R3 Humanized
Colorectal cancer, metastatic non-small cell lung cancer and 
head and neck cancer.

PhaseI/II

Tyrosine kinase inhibitor Erlotinib -
Non-Small Cell Lung Cancer (NSCLC), pancreatic cancer. It is 
a receptor tyrosine kinase inhibitor, which acts on the EGFR.

 lung cancer in phase III 
trials.
Approved

Tyrosine kinase inhibitor Gefitinib -
It works by slowing or stopping the growth of cancer  cells. 
Gefitinib blocks a certain protein (an enzyme called tyrosine 
kinase).

lung cancer.
Approved

[Table/Fig-4]:	 List of monoclonal antibodies that target EGFR for cancer therapy.
EGFR: Epidermal growth factor receptor

progression and the recurrence of the tumours including, MHC 
Class II presenting, activated T cell, induce antibody production and 
regulation of cytokines. To recognise abnormality or tumour, MHC 
with peptide should be presented to T cells. EGFRIs can stimulate 
MHC presenting and with control of EGFR that cause vegetates of 
tumour, strongly may cause surrender of tumour growth. Finally, 

	[10] Pollack BP, Sapkota B, Cartee TV. Epidermal growth factor receptor inhibition 
augments the expression of MHC class I and II genes. Clin Cancer Res. 
2011;17(13):4400-13.

	 Banerjee D, Matthews P, Matayeva E, Kaufman JL, Steinman RM, Dhodapkar [11]
KM. Enhanced T-cell responses to glioma cells coated with the anti-EGF 
receptor antibody and targeted to activating FcγRs on human dendritic cells. J 
Immunother. 2008;31(2):113-20.

at present, there are some FDA approved HER family inhibitors 
that their efficacy in patient with various tumours have been proved 
however, in the patients with KRAS mutation this inhibitor has no 
efficacy so, studies should be focused on solving this problem. All 
in all, there are many proposed strategies for solving this problem 
that are in clinical stages of development and the study for new 
strategies are ongoing at present [Table/Fig-4].

Conclusion
Several studies of recent evidence suggest that the fused ligands 
can: 1) block signal transduction; 2) induce immune system 
respond against malignant cells; and 3) mention strategy for treating 
of tumours. In addition, combining traditional drugs lead to high 
efficacy of the tumour treatment.
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